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ABSTRACT 

We show tha t  a finite generalized polygon F is Moufang with respect to a 

group G if and only if for every flag {z, y} of  F, t h e  subgroup G1 (z, y) of 

G fixing every element incident with one of z, y acts transitively on the 

set of apar tments  containing the elements u, z, y, w, where u ~ y (resp. 

w ~ z) is an arbitrary element incident with z (reap. y). 

1. I n t r o d u c t i o n  

Let r be an arbitrary undirected graph and let G be a subgroup of aut(F). For 

each vertex z,  we denote by F(z)  the set of vertices adjacent to z and by G(z)  

the stabilizer of z in G. For each i E N, we set 

(ula(z,u)<q 
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where O(x, u) denotes the distance from x to u. A k-path (for k E N) is an (k + 1)- 

tuple ( x 0 , . . . , z k )  of vertices such that xi • F(zi-1)  if 1 < i < k and zi # xi-2 

i f 2 < i < k .  Let 

G(zo , . . .  ,zk) = G(xo) N . . .  r3 G(zk) and Gi(zo, . . .  ,zk) = a i (zo)  N . . .  N Gi(zk) 

for each k-path (x0, . . .  , z t )  and each i E N. An m-circuit (for m > 3) in r is an 

m-path (zo , . . .  ,Xm) with xo = Xm. 

As in [14], we call a graph r a generalized n-gon (for n > 2) if every two edges 

of F lie on a common 2n-circuit of F and F contains no m-circuits for m < 2n. 

The 2n-circuits of r ~ e  called apartments. Let IF(x)[ = s + 1 and Ir(u)l = t + 1 

for some edge {x, y}. If s and t > 2, then s and t are easily seen to be independent 

of the edge {z, y}; in this case, F is called thick. The pair (s, t) is called the order 

of F. For an introduction to generalized polygons and related concepts, see [6], 

[11] and [13]. 

A generalized polygon n-gon with n _> 3 is called Moufan9 with respect to 

some G _< aut(F) if for every n-path ( z0 , . . . ,  x , ) ,  the subgroup Gx (Xl , . . . ,  •n--1) 
acts transitively on the set of apartments of F through (x0, . . .  ,x,,). In [15] and 

several as yet unpublished papers, Tits has classified Moufang polygons. They are 

the rank 2 spherical buildings associated to certain classical or algebraic simple 

groups (for n = 3, 4 and 6), to certain so-called mixed groups of type G2 (for 

n = 6) and to the Ree groups of type 2F4 (for n = 8). The first step [14] in the 

classification of Moufang polygons is to show that n = 3, 4, 6 or 8. An essential 

ingredient in the proof (see [19]) is the following simple fact, a special case of [12, 

(4.1.1)]: 

(1.1): / f F  is a generalized n-gon and a _< aut(F), then for each edge {x, y}, the 

stabilizer in GI(x,y) of an apartment through {z,y} is trivial. 

Now let 3 < k < n and suppose F is a generalized n-gon. We will say that F 

is k-Moufang with respect to some G < aut(F) if for each k-path (z0, . . .  ,zk), 

the subgroup G l (x l , . . . ,Xk -1 )  acts transitively on the set of apartments of F 

through (x0 , . . . ,  zk). By definition, F is Moufang with respect to G whenever it 

is n-Moufang with respect to G. It is easy to deduce from (1.1) (see (7.1) below) 

that F must, in fact, be Moufang with respect to G whenever it is 4-Moufang 

with respect to G. Our main result is the following: 
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(1.2) THEOREM: Let F be a finite thick generalized n-gon with n > 3 which is 

3-Moufang with respect to some G < aut(F). Then F is Moufang with respect 

to G. 

Note that the case n = 4 is also proved in [16] in a more geometrical fashion. 

In [2], Fong and Seitz classified finite n-gons F with n > 3 having a group 

G <_ hut(r) such that for every edge {x, y} of F, the stabilizer G(x, y) contains a 

normal, nilpotent subgroup acting transitively on the set of apartments through 

{x, y}. It is well known that the Moufang property implies this hypothesis; an 

easy proof of this implication based only on [18] is contained in (3.1)-(3.2) below. 

We do not know if (1.2) holds for infinite generalized polygons. 

2. Preliminary observations 

Our proof of (1.2) will depend on the following results which are descended from 

earlier results of Thompson [10], Wielandt [20] and Gardiner [3]: Let r be an 

arbitrary connected, undirected graph and G a subgroup of ant(F) such that for 

each vertex x, the stabilizer G(x) acts primitively on F(z) (so, in particular, G 

acts transitively on the edge set of F). Suppose, too, that G2(x) ~ G~(x,y) for 

each vertex x. Then there exists a vertex x and a prime p such that for each 

y • F(x), the following assertions hold: 

(2.1) Op(G(x, y)) ~ G~(y). 

(2.2) GI(x,y)/G2(y) is a p-group. 

(2.3) IIO~G(x,y)) ~ Gi(x), then G,(x,y) is a p-group. 

Proof." These facts follow from the arguments of [18]. For the convenience of 

the reader, we give the details here. Choose an edge {x, V} and let H = G(x, y). 

We show first that everyaninimal normal subgroup of H lies in GI(x). Let 

A be such a subgroup and suppose that A ~ GI(x). Choose w E F(x) and let 

a • A\G(w). Since a , (x )  ~ H, we have Anal(z) = 1 andthus [A, al(x)] = 1. It 

follows that G1 (w, x) = Gl(w, x) a = G1 (x, wa). But this implies that Gl(w, x) 

(G(w,x), G(w a, x)) = G(x) and hence Gl(w, x) < G2(x), which contradicts our 

assumption. By a similar argument, every minimal normal subgroup of H lies in 

GI(y) as well. 

We show next that soc(g)  < soc(Gl(x)), where soc(X) denotes the subgroup 

generated by all the minimal normal subgroups of a group X. Again, let A be 
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a minimal normal subgroup of H. Then A <3 G1 (x); let B be a minimal normal 

subgroup of Gl(z) contained in A. Let B* = (B h [ h E H) .  Then B* < A and 

B* <3 H; thus B* = A. Since each B h is a minimal normal subgroup of Gl(z), 

it follows that A = B* < soc(Gl(z)).  Thus soc(H) < soc(G~(z)) as claimed. By 

a similar argument, soc(H) < soc(Gl(y)).  

If soc(O,(x)) = soc(H) = soc(a , (y) ) ,  then soc(H) <3 (G(x),a(y)). Since F 

is connected, (G(z), G(y)) acts transitively on the edge set of F. This implies, 

however, that soc(H) = 1 and therefore H = 1. We conclude that soc(H) 

soc(Gl(u))  for u = x or y. Now let B be a minimal normal subgroup of Gl(u) 

not contained in soc(H) and A a minimal normal subgroup of H contained in 

B* = (B h ] h • H).  Since B is a minimal normal subgroup of G~(u), either 

A 13 B = 1 or B < A. Since, however, A _< soc(H) and B 2~ soc(H), we must 

have A I"1B = 1 and thus [A, B] = 1. Hence [A, B h] = [A, B] h = 1 for all h • H,  

and so [A, B*] = 1. Since A _< B*, it follows that A is abelian. Thus Op(H) # 1 

for some prime p. 

Let K = G,(x,y). If Op(H) < K, then Op(G,(x)) = Op(H) = Or(G,(y)) , 

which implies that  Or(H ) <3 (G(x), G(y)). Since Or(H ) ¢ 1, we can choose z 

and y so that (2.1) holds. Choose z • r ( y )  and an element a • Or(H)\G(z ). 

Let M = Or(G~(y,z)) and g = M' .  Then g <3 GI(F) and M N / N  is a sub- 

group of (MOr(H) 13 Gl(y)) /g .  Since [MOr(H)]/]N ] is a power of p, so is 

]MN/N] = ]M/M N N I. Since Or(M) = M, it follows that  M = g .  Thus 

M <3 (G(y,z) ,G(y,z '))  = G(y), so Or(K) = M < G2(y), so (2.2) holds. If 

Or(H ) ~ GI ( x) as well, then Or(K) <1 G( x ) by a similar argument, so Or(K) = 1 

and (2.3) follows. " 

Now suppose that  F is an arbitrary generalized n-gon. A su b g rap h / t  of F is 

called convex if for every m < n, A contains every m-path of F whose end-points 

lie in A. The following result is well known (see, for instance, [17]): 

(2.4): Let F be a generalized n-gon and A a convex subgraph containing an 

(n + 1)-path (zo,. . .  , z , + l ) .  Let 1 < k < n and suppose that ]A(xi)] >_ 3 for 

i = k - 1 and k. Then A is a sub-n-gon; moreover, A is the convex closure of 

( '0, . . .  ,'Tn+l) U A(.Tk-1) U A( 'k)  In r .  

Proof." Let @ be the convex closure of (x0 , . . .  ,z , ,+l)  U A(zk_l)  U A(zk) in r .  

' (for i k 1 and k) be the vertex opposite zi on the T h e n @  C_ A. Let z i = - 

unique apartment through ( z 0 , . . . ,  z,,+l); these vertices lie in ~. To each vertex 
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in r(,k) there is a unique nearest vertex in r(,~). Since A(-k) = ~(,~), it 

follows that A(z~) = @(x~). Choose v • A(zk-1) \{zk-2 ,zk} .  Then z~ and v 

are at distance n in r ,  so now A(x~) = ¢(x~) implies that A(v) = ~(v). The 

subgraph e2 contains the unique apartment through v, xk-1, x t ,  x~_ 1. Since a 

convex subgraph of r is clearly connected, we conclude that A = ~ and that 

[A(u)[ = [A(xk-1)[ or ]A(xk)] for every vertex u of A. In particular, [A(u)[ >_ 3 

for every vertex u of A, from which it follows that  A is itself a generalized n-gon. 
| 

3.  T h e  p r o o f  o f  (1 .2) :  F ir s t  part  

Let r be a finite thick n-gon with n >_ 4 which is 3-Moufang with respect to 

some subgroup G of aut(r). (If n = 3, there is nothing to prove.) By [1], we 

have n = 4, 6 or 8. Then G2(x) ~ Gl(x,y) for each edge {x,y} and G(x) acts 

2-transitively on r (x )  for each vertex x, so (2.1)-(2.3) hold for some vertex x 

and some prime p. Let (Xo,xl,. . .  ,x2,) be a 2n-circuit in F with xl = x. Let 

IF(x0)l = s + 1 and ]r(xl)] = t -f 1. By (2.1), s is a multiple o f p  and by (2.2), t 

is a power ofp.  By (1.1), IGl(x0, l)l = the number of (n + 1)-paths 
of r beginning with a given 3-path. 

(3.1): If s is a power of p, then Ov(G(xo,zl) ) acts transitively on the set of 

apartments through {x0, xl} (so r is Moufang with respect to G by the theorem 
[2] of Fong and Seitz). 

Proof: If s is a power of p, so is [Gl(u,v)[ for each edge {u,v} of F. Since 

Gl(xo,zl), Gl(w, xo) and Gl(xl,z) are subnormal in G(xo,xl) for all w E 

r (x0 ) \ {x l}  and all z • r ( x l ) \ { x 0 ) ,  it follows that Op(G(xo,xl)) acts transi- 

tively on the set of 3-paths (u0 , . . .  ,ua) with ul = x0 and us = xl and hence on 

the set of apartments through {x0, Xl }. | 

Let H = Gl(x2,zs) N G(xl , . . .  ,x,+l). Then IH] = t. 

(3.2): / . fH = G~(x2,. . . ,x,) ,  then s is a power of p. 

Proof: We have H <3 Gl (xs , . . . , z , )  <3... <3 G,(x,)  <3 G(x,,x,+l).  Since H 

is a p-group, it follows that  H <_ Op(G(x,,z,+l)). By (1.1), H 2~ G I ( z , + I )  and 

hence Op(G(x,, x ,+ l ) )  ~ GI(zn+,) as well. Thus (2.3) implies that  s is a power 

ofp .  | 
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We will call a sub-n-gon of r full if it is thick and of order ( s ' , t  ~) with s' = s 

or t ~ = t but  not both. 

(3.3): Let m < k - 1 < m + n - 2 and suppose 

a • Cl(xk-1) n C(xm,. . .  , ~m+, ) \g l (xk)  

has r > 2 f~xed points in r (xk) \{xk-1  }. Then r contains a fuIt sub-n-gon of  

order (r , t )  i f  k is even and order ( s , r )  i f  k is odd. 

Proof." The subgroup G(x,n . . . ,xm+,)  N Gl(Xk-l,Xk) contains an element b 

which maps (Xra,..., Zm-I-n , ;r.m+n+l) to (Xrn,..., Xrn+n, xa.l.n.l.1). Thus 

ab • G l (xk -1 )  n G ( z m , . . .  ,z,,,+,+a), 

so the fixed points of ab form a full sub-n-gon of r by (2.4). | 

(3.4): / . f r  contains no full sub-n-gons, then H = GI(X2, . . .  , x , ) .  

Proof." If H ~ G,(x2,...,xn), then we can choose k < n minimal such that 

H ~ G l ( x 2 , . . .  ,x~).  Choose a e H \ G l ( z 2 , . . . , z k )  and let r be the number of 

fixed points of a in r (xk) \{Z~- l} .  Since IHI = t is a power o f p  and p divides s, 

we have r > 2. Thus (3.3) applies. I 

By the results of this section, we can assume from now on that  s is not a 

power of p and that r contains a full sub-n-gon A containing the apartment 

( x 0 ,  x l , .  • • ,  x 2 , ) .  

4. S u b p o l y g o n s  

We interrupt the proof of (1.2) a moment to record the results on full subpolygons 

we will need. Le t  r be an arbitrary thick finite generalized n-gon of order (k, m) 

and suppose that  17 contains a full sub-n-gon A of order (k I, m). 

(4.1): n # s. 

Proof." If n = 8, then m = (kt) 2 and k = m 2 by the last theorem in [9]. This 

implies that k m =  (klrn) 2, which contradicts the fact that 2kin must be a perfect 

square [1]. II 
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(4.2) :  I f  n = 4 or 6, then k' < m. I l k '  = m, then k = m "/2. 

Proof: T h e  ease  n = 4 is h a n d l e d  in [5,(2.2.2)]. I f  n = 6, t h e n  k m  > (k 'm)  2 by  

[8]. Since k < m s by [4], it follows tha t  k '  < rn and  k = m s if k '  = m.  | 

We re tu rn  now to the s i tuat ion at the end of §3. By (4.1), n = 4 or 6. Let 

D denote  the  setwise stabil izer of A in G and E < D the pointwise stabilizer. 

Let f = 0 or 1 and choose z E A(x ,+ f ) \ {x=+I-1} .  There  exists an element  

a E Gl(xy+l ,xI+2)  M G ( x I , . . .  ,xn+I) m a p p i n g  z to Xn+,f+l. By (2.4), A is the 

unique sub-n-gon of F having the same order  as A and containing A(x i+l  ) U 

A(xI+2 ) U { x i , . . .  , x , + / + l } .  It  follows tha t  a E D. Thus  A is 3-Moufang with  

respect  to D / E .  By induction,  we can assume tha t  A is Moufang  with respect  

to  D / E ,  so, by  (3.1)-(3.2),  [2] applies.  In par t icular ,  the pa r ame te r s  of A are 

p r ime  powers.  Since s is not  a p r ime power,  (4.2) implies t ha t  the  p a r a m e t e r s  of  

A are dist inct  and  tha t  IA(x~)I - 1 = t is the larger. We conclude tha t  A is a 

U4(q)-quadrangle wi th  t = q2 or a Us(q)-quadrangle with t = qa if n = 4 and  A 

is a SD4(q)-hexagon with  t = q3 if n = 6. 

5. T h e  p r o o f  o f  (1.2):  C o n c l u s i o n  

Let M = Gl (x4 ,xs )  N G(zs , . . . , xn+3) .  Again by (2.4), H -- Gl(x2,xa)  f'l 

G(X l , . . . ,Xn+l )  and M bo th  lie in D. Suppose now tha t  n -- 4. Let a E H 

be  arbi t rary .  By the  roo t -group  s t ruc ture  of  U4(q) and Us(q) (see §6 below),  

we can choose a nontr ivial  e lement  b E M such tha t  [a, b] E E .  T h e n  in 

fact [a,b] E Gl(x3,x4)  N E, so [a,b] = 1 by (1.1). Since a E GI(x2) ,  it fol- 

lows tha t  a E GI(x  b) as well. Since b ~ 1, we have x2 ~ z~ by (1.1), so 

the  subgroup  G l ( x l ) N  G(x l , x2 ,xa)  contains an element  c m a p  iSing x b to x4. 

Then  a c E Gl(x2 ,x3 ,x4)  and (c -1)  a E Gl (Xl ) ,  so [a,c] = a - l a  c = (c-1)ac E 

G l ( X l , X 2 , x 3 ) N G ( x l , . . . , x s )  ~ 1. Hence a-~ a c E Gl(x4) ,  and  we are  done by 

(3.2). 

It  remains  to consider the case n -- 6. By the roo t -group  s t ruc ture  of  aD4(q) 

(see §6 below), we can choose nontr ivial  e lements  a E H _< D and  b E M such 

tha t  [a, b]E E .  T h e n  [a, b] E Gl(xa ,x4 )N  E -- 1, so a lies in Gl(x2) and Gl (x  b) 

but  in nei ther  Gl(Xl)  nor  Gl(x~). Let U -- Gl(x2 ,xs ,x4)  M D. If  c E D(x2,xa)  

m a p s  x b to x4, then  a c E U. Thus  U acts  nontr ivial ly  on bo th  I ' ( x l )  and  

F(xs) .  The  group  U is normal ized by  D(xo , . . .  ,x2,,), the inverse image  in D of 

a C a f t a n  subgroup  of D / E .  By the s t ruc ture  of D (see §6 below), this implies 
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that U acts transitively on the set of apartments of A through (Xl , . . . ,  xs). Thus 

[GI(x2, zs, z4) N G(x l , . . . ,  zT)[ >_ t, so H = GI(x2, xs, x4) N G ( z l , . . . ,  x7). Then 

H _< GI(zb) follows by (3.3) since all sub-hexagons of F are of order (q,t). 

Now let d be an arbitrary element of H and e an element of G mapping 

( x l , . . . ,  xT) to (xT, . . . ,  xl). Since H acts transitively on F(xl) \{x2) ,  there exists 

an element c e H such that dce • G(xs). Thus dc ~ • Gl(xS,X4)NG(x, , . . . ,  xs) = 

1. Since c ~ • GI(xe), it follows that d • G~(x6) and we are again done by (3.2). 

6. Proper t i e s  o f  U4(q), Us(q) and  SD4(q) 

We give here an explanation of the properties of U4(q), Us(q) and SD4(q) used 

in the previous section. Let F = D/E; for each n-path (u0 , . . . ,  u , )  in A, let 

F[uo, . . . ,  u,] denote the corresponding root group in F and 

F[u,~, . . . ,  u,] = (F lu0 , . . . ,  u,],  Flu1, . . . ,  u , + l ] , . . . ,  F[um, . . . ,  urn+hi) 

for 1 _< rn < n. Let Fk = F[xk, . . . ,xk+, , ]  for k = 1, 2 and 3. We have 

H ~ F1, M ~ Fs and [F1, Fs] _< F2. Choose a E F1. Since [F2, Fa] = 1, the 

map ~b: Fa ~ F2 given by be = [a, b -1] for b E Fs is a homomorphism. Since 

IF2[ < [Fs[, the kernel of ¢ is nontrivial. 

Now let n = 6 and W = UE/E.  Then W is a subgroup of F [ x l , . . . ,  xb] which 

acts nontrivially on both F(xl ) and F(xb) and is normalized by F(x0, z l , . . . ,  x12). 

We claim that W = F Ix1 , . . . ,  xb]. If q = 2, this is easily verified by calculating 

with the presentation for SD4(2 ) given in [7,(3.8)]. If q > 2, then [7,(2.7)] implies 

that W induces a group of order qe on F(xl)OF(xs);  since [F[xH, x0 , . . ,  xb], F1] -- 

F0, the claim follows. 

7. 4 - M o u f a n g  p o l y g o n s  

For the sake of completeness, we observe: 

(7.1) THEOREM: Let r be a thick generalized n-gon, finite or infinite, with n >_ 4 

which is 4-Moufang with respect to some G _< aut(F). Then F is Moufang with 

respect to G. 

Proof'. Let (x0 , . . . ,  xn+l) be an ( n + l ) - p a t h  in F and let k _< n be maximal such 

that the subgroup K = GI(Xl, x2, xs)N G(x0 , . . . ,  xn) lies in G1 (xk). We need to 

show that k = n - l ,  so suppose that k < n - 1  and choose a E K\GI(xk+I) .  There 
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exists b E G l ( x k - l , x k , x k + l )  mapping ( x 0 , . . . , x , , x , ~ + l )  to ( x 0 , . . . , x n , x n + l ) .  

Thus ab E G l ( x k - l , x k )  N G ( x 0 , . . . , x , + l )  = 1 by (1.1). But this implies that  

a E G1 (~k-t-1)" With this contradiction, we conclude that k = n - 1. | 

We remark that our proof of (1.2) is derived from an earlier, more geometric 

proof of the first author. In that proof, one considers compositions (not always 

commutators!) offla#-elations (i. e. collineations belonging to Gl(Xl,  x2) for some 

flag {xl ,x2}) in such a way that  the resulting collineation ~ either fixes some 

subgeometry, or acts semi-regularly on a set of s or 8 - 1 points (or t or t - 1 

lines). In the first case, one shows that these subgeometries are either Moufang 

full subpolygons or the flag-complex of a Moufang generalized polygon, hence one 

of the parameters of F is a prime power. In the latter case we have conditions 

on the order of 4 and s or t and if we play it right, then eventually this leads 

to the prime power condition. Of course it is the interplay of the arguments 

in the two cases that makes it work. Concerning this geometrical proof, the 

first author whishes to thank F. Buekenhout and J. A. Thas for some helpful 
comments. 

R e f e r e n c e s  

[1] W. Felt and G. Higman, The nonexistence of certlain generalzed polygons, J. 

Algebra I (1964), 114-131. 

[2] P. Fong and G. Seitz, Groups with a (B, N)-pair of rank 2, I, II, Invent. Math. 21 

(1971), 1-57 and 24 (1974), 191-239. 

[3] A. Gardiner, Arc transitivity in graphs, Quart. J. Math. Oxford 24 (1973), 399- 

407. 

[4] W. Haemers and C. Roos, An inequality for generalized hexagons, Geom. Dedicata 
10 (1981), 219-222. 

[5] S. E. Payne and J. A. Thas, Finite generalized quadrangles, Research Notes in 

Mathematics 110, Pitman, Boston-London-Melbourne (1984). 

[6] M. Ronan, Lectures on Buildings, Academic Press, New York, 1989. 

[7] G. Stroth and R. Weiss, Groups with the BNB-property, Geom. Dedicata 35 
(1990), 251-282. 

[8] J. A. Thas, A restriction on the parameters ofa  subhexagon, J. Comb. Theory A 

21 (1976), 115-117. 

[9] J. A. Thas, A restriction on the parameters of a suboctagon, J. Comb. Theory A 

27 (1979), 385-387. 



330 H. VAN MALDEGHEM lsr. J. Math. 

[10] J. G. Thompson, Bounds for orders of max/raM subgroups, J. Algebra 14 (1970), 

135-138. 

[11] J. Tits, Sur la triMitd et certains groupes qui s'en dddulsent, I.H.E.S. Publ. Math. 

2 (1959), 14-60. 

[12] J. Tits, Buildings of spherical type and tinite BN-pairs, Lecture Notes in Math. 
386, Springer, Berlin-Heidelberg-New York (1974). 

[13] J. Tits, Classification of buildings of spherical type and Moufang polygons: a sur- 

vey, Atti dei Convegni Lincei 17 (1976), 229-246. 

[14] J. Tits, Non-existence de certalns polygones gdn#rMisgs, I, II, Invent. Math 36 

(1976), 275-284 and 51 (1979), 267-289. 

[15] J. Tits, Moufang octagons and the Ree groups of type 2F4, Amer. J. Math. 105 

(1983), 539-594. 

[16] H. Van Maldeghem, S.E. Payne and J.A. Thas, Desargueslan tinite generalized 

quadrangles are classical or dual classical, Des. Codes Cryptogr. 1 (1992), 299- 

305. 

[17] M. Walker, On central root automorphlsms oftlnite generalized polygons, Thesis, 

(1980). 

[18] R. Weiss, Elations of graphs, Acta Math. Acad. Sci. tlungar. 34 (1979), 101-103. 

[19] R. Weiss, The nonexistence of certain Moufang polygons, Invent. Math. 51 (1979), 

261-266. 

[20] H. Wielandt, Subnormal subgroups and permutation groups, Lecture Notes, The 

Ohio State University (1971). 


